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The Renewal Equation for Markov Renewal

Processes with Applications to Storage Models

by

Eric S. Tollar

Abstract

For Markov renewal processes in which the sojourn times are controlled

by an imbedded, denumerable state Markov chain, it is shown that there exists

a random time at which the Markov renewal process regenerates. The basic

renewal theorem is then applied to determine the limiting behavior of the

Markov renewal process. These results are applied to a particular two com-

partment storage model to determine the limiting behavior of the amounts in

storage.
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The Renewal Equation for Markov Renewal

Processes with Applications to Storage Models

1. INTRODUCTION

Let J be a denumerable set, and let {X ,n=0,1,...} be a stationary,n

positive recurrent, aperiodic, irreducible Markov chain with state space

J. Let - be the stationary measure of {Xn 1. For an arbitrary space

(S,F), let {Z ,n=0,1,2,...} be a process defined on (S,F) such that

((X ,Z ),n=0,1,2,...} is also a stationary 14arkov chain with transition
nn

probabilities

P n(i,y: (j ,A)) P(X -j,Z AIX =i,Z=y),.)
n n I 0 i, 0y

for i,jeJ, yeS, A4E F.

Let 0 T 0 T 1 ! T2 f ... be a sequence of random variables defined

such that{((X n Zn ),Tn ),n=Osl,...} is a Markov renewal process, where

for t>_0, A c F,

P(T nt,Z n AIX Xn_ i )

(1.2)

=P(T ntlX ,X )P(Z nEAIX X ).

n n-l' n n n-l" n

That is, the sequences {Tn I and {Z n  are conditionally independent

given {X n.

The first moment of the sojourn time in state (i,z) is independent of

z, and given by

.J.



m. : f t I dP(Z 1 J,Tl 5t IX 0 =i).
0 jCJ

The average sojourn time we define by

I i im "  (1.3)

Finally, we define

(X(t),Z(t)) : (XN(t), ZN(t)) ,

where

N(t):sup{n: T nt!. (1.4)n

There has been a substantial body of work on semi-Markov processes

on arbitrary state spaces, in general directed at the asymptotic behavior

of the process, and this paper is no exception. Typically, the authors

attempt to establish conditions sufficient to guarantee that the basic

renewal theorem can be applied to the process. The approaches have been

varied (see qinlar (1969), Athreya, McDonald and Ney (1978a,b), Athreya

and Ney (1978), Kesten (1974), and Nummelin (1978)), but in general seem

to be directed at the creation of a stopping time, independent of the

future process. Athreya, McDonald and Ney used the properties of so-

called C-sets of 0-irreducible Markov chains (see Orey (1971)) to propose

a method for the creation of an artificlal renewal point of the process.

Unfortunately, the method does not 7enpralize to all markov reneval pro-

cesses. However, we will establish in section 2 that for a process as

2
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defined above, a renewal point can be created. Therefore a renewal equatizn

is available, and results follow from application of the basic renewal

theorem.

In the subsequent section, these results are applied to a storage

model. In a simpler form, the model was first proposed as a single

compartment model by Senturia and Puri (1973), with subsequent research

by Senturia and Puri (1974), Puri and Senturia (1975), Puri (1978),

Balagopal (1979), Puri and Woolford (1981), and Puri and Tollar (1985).

The model was extended to an arbitrary compartment model defined on a

Markov chain by Tollar (1985a,b) and was considered with two compartments

when defined on a semi-Markov process by Tollar (1986). However, in the

last cited paper, the case where both compartments were subcritical was

left as an open question. Using the results of section 2, the asymptotic

behavior of the storage model when both compartments are subcritical is

determined via the basic renewal theorem.

2. RENEWAL EQUATIONS FOR THE SEMI-MARKOV PROCESS

While the structure of {X n,Z n } is crucial in this paper, for ease

of development, let us temporarily discuss Markov chains on arbitrary

spaces. Let Y nn=0,1,...} be a Markov chain which takes values on some

arbitrary state space (S,F), with P(y,') a regular version of the station-

ary transition probabilities. Then for zc S, A EF, we define the n-step

transition probabilities recursively by.. ~

P n(z,A)= fP(z,dy)pn-l(y,A). (2.1)
s
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Let be a non-trivial a-finite measure on (S,F).

Definition 1. {Y n is 0-irreducible if, whenever *(A)> 0 for A E F,n

then 2 -nPn(y,A) > 0, for all y c S.
n=l

Definition 2. A a-finite, non-trivial measure v on F is called sub-

invariant for {Y } if P(A) fi_(dy)P(y,A) for all Ac F, and called in-n
svariant if equality holds.

Definition 3. If there is a finite invariant measure P on F with P(S) =1,

we call {Y I ergodic, and V the stationary measure of {Y }.n n

Let {(Y nT n) be a semi-Markov process defined on the state space

(S,F), where for all yES, Ae F, t_>O, HYA(t) is a regular version of

the transition function with respect to 0. That is,

Hy. (t) =P(Y neA, n-Tn _lt IY _ l=y), (2.2)

(for details, see Cinlar (1969)).

The concept of a splitting technique using C-sets to establish

asymptotic convergence of the semi-Markov process has been proposed by

lNummelin (1978), Athreya, McDonald and Ney (1978a,b), and Athreya and

Ney (1978). The pertinent results we summarize below.

HYPOTHESIS. There exists an AE F, an integer k >0, a probability measure

x' on S nA, a family of probability measures v(x,0) on IR for all xc A,

and a constant A, 0<X <1, such that for all xE A, E E F and Dc3B

'N
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P(YkcE,TkcDYo=x) :*(E)v(x,D).

If this hypothesis is valid, then Athreya and Ney (1978) establish the

following result:

LEMMA 2.1. Subject to the hypothesis, there exists a semi-Markov process

{(Y*,T*), n=l,2,...} distributed as ((Y ,T ), n=0,1,2,.. .}, and a random
nfn n n

time N such that for all BE F, C ]B , zCS,

PC Y*EB ,T*cC,N<-IY*=z)
N N O0

= V(B)P(T*EC,N<-IY*=z).

For any probability measure v(-), any random variable X, and any set

AE F, we define

E V(X) =f P(XlY0=z)dv(z), (2.3)
s

and

P.(XEA)=EV(IA(X)). (2.4)

From lemma 2.1 it can be easily seen that

P (Y(t)EB) =P (Y*(t)EB,T*>t)

+f P (Y(t-T)cB)dP (T*<T), (2.5)
0

5



which implies that renewal theory can be applied. While it is not clear

in general whether or not the hypothesis is valid for all -irreducible

Markov renewal processes, we will establish that it follows for

Zn = {(X nY n) as proposed in section 1. The following lemma is a modi-

fication of thf. proof of the existence of C-sets for 0-irreducible Markov

chains (see Orey (1971)).

LEMMA 2.2. Let {X n,Zn I be a 4-irreducible Markov chain as defined in

Section 1. Then for any set EcS and any j0 e J where 0(j0,E)> 0, there

is a k>0, a p> 0 , a sequence j" j29 ... Jik-c J, and a set AcE with

(J0,A) >0 such that for all zcA, and all BcS,

P(Xn=j0%Xkl=jkl,... ,Xl=jl,ZkcBIXOjo,Zo=z ) p4(j 0 ,BnA).

PROOF. For convenience of notation, let $.(C)=0(j,C) for all CcS.

Further, for any set UcSxS let

i) U1(x) (y:(Xy) E U},

(2.6)

ii) U2 (Y) (x:((x,y) C U).

Let il m stand for a general sequence il, i2, ... , I (if a particular

sequence is necessary, it will be specified). Let p. (x,y) be the

Radon-Nikodym derivative of

P(z((")IX 0 JoZ0=xXI=iI ...,X M-l=im-lXm = 0



with respect to 0J.. Finally, for our set E, let

H. {(x,y) E E x E:pi (x,y) -> l/n), (2.7)j 'm 'm~

and

H= U U u . (2.8)Sm=1 n=l {il mi j'l_5j!_m-i } 11,m

Clearly, by the 0-irreducibility of {(X nZ n)}, we have for all xEE that

4j0 (H (x))>0, for H (x) as in 2.6i. Then, by Fubini's theorem, we have

fijo (Hl(X))jo (dx) =f j0 (H2(Y))j0 (dy), (2.9)

so 0 ({y:o (H2 )> })>0 . This implies that there must be an

(nI) (n2)
nI , ilm 1 and an n2' il1m2 where for F=H 1 and G=H.ll~mI  ii,m2

jo ({y:j0 (F2(y))>ojo ((G1(y))>O})> 0. (2.10)

Consider finite partions {E } of E, becoming finer as n increases.
Let (n)= E(n) XE(n) Clearly {E (n) is a finite partition of E2 = ExE.

C 8 a a a,8

Let i(n,x) be the unique index for the element of the partition {Ea (n

where xeE(n) By a differentiation theorem (see Doob (1953)), wei(n,x)"

have that for each measurable set BcE
2 ,

2 (n) 2 (n)I(Xy), (2.11)
[€ i(n,x),i(n,y) 0 i(n,x),i(n,y) B

S,,7



i E2 ¢2(N 0ad2.: ×C

for all x, yeE -N, where *0 (N)=O and =0 0"
J0 30 o jO*

Therefore, for F and G as in (2.10), there is an x0, YO and z0 with

x0  F 2 (y ) - N2(y 0), and z0 c G1(y 0) - N1(y O ), which satisfy (2.11). Let

a 2i(m,x0 ), 8=i(m,y0 ) and y=i(m,zO). Then there is an N where for all

m> N,

10 2 M) (3/4)0 (F(M) (E))

cjo( 0.0 jo ..

(2.12)
2 (in) >(3/4) ((m), m

* O Oo O )YJo )

For n>N, let

A= {xNE E (n ): 0 (E(n )nFl(x)) (3/4)0j (E(n)},

(2.13)

B {z EE (n ) : (E(n)nG2W) >_(/4) (En) ).
Y J0  a Jo a

Clearly j (A)>0 and 4j (B)>0 (otherwise (2.12) would be violated), and

for x eA, zEB, we have

(F ) nG2( z)) -) E (~n))/ 2 . (2.14)0 J0

:yTherefore, for y Fl(x) nG 2(z), (x,y) E F and (y,z) o G. The efinition of

the Radon-Nikodym derivative yields

8



p (x-z -- fllfl pir(wwwTrrrrwZ)n -

I'm7 b 1 1Im 2  S 1m I I'm 2 0

2N f P. (x,y)p. (y,z)Op. (dy) (2.15)
F I(xWfG 2(Z) '1,m I 1'm 2

2:W())/2n n
0 1 2'

Since {(Xn Z )) is -irreducible, there exists an mn>0 and a c> 0 where

j. (C M )> 0 for

*9C MCc = {xcB:P((X mZ m (i 0 ,A) I (X,Z 0 ) = (j0 ,x)) >c}. (2.16)

If we copsider only those paths i 1T where

PXm 0jI rn-1i M-1- X~ 1iI1X 0=j )> >0, then there must be a particular

'. 'm With 0 o(C*) >0, where

C*={xEB:P~m) (x,A)>cl, (2.17)
',m

for

(M) (A) P(Z A AO oj x*ZX=i..9X )

1' m0 1

Therefore, from (2.15) we have for xe C*, ye C* that

99

Pii~ibrnii~2(X~) f ~(~dz~..(Z",y



Thus, for k =m+m 1 + m2 , for DcS, and for

(•, "j2 .' ,k-l U ,'lm o' O ), it follows that for all

xE C*,

P(ZkEDIXo=J oZo=xXl:Jji " X K-l Jk-i'Xk: '0 )

:C (DnC*)¢ (E(n) )/2n n. (2.18)
-1

From (2.18) the lemma follows, where A :C*, and

p 0 (E ,...,Xl= o

COROLLARY. If {(Xn ,Z n)} is a 0-irreducible markov chain as in lemma 2.2,

and if {T } and (Z n are conditionally independent given {X 1, then forn - n - n

%:. '' E, {ji1, k, A, and p as in lemma 2.2, for xtA, Ce E +, DcS,

P(XkEjOZkEB,TkEC!XO=JOZo=x) > po(j0 ,BnA)v(c),

where v(ro,x)=P( T :5xIXo~oxz ..jxkj

PROOF. Certainly, for all xE S,

-10

F
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P(Xvj,0 ZkcBTkEC IX0 0 ,Z0 =x)

> P(xI=jl,...)k=j 0 IX0:jo)P(ZkcB,T k C CX0"J0 ,Z 0=X,X I=i ll ... V O )

SP(XIjl,...,X 0X0 =Jo)P(ZkCBIXojoZo~xX=j,.. .Xk:jO) (2.19)

P(TkcCIXo=j0,Xljl,.--X=j0 ),

where the equality follows from the conditional independence of Tk and

Zk given {X.:i=0, 1, ...k).:1

Therefore, for x c A,

P(Xk=i OZkEBTkEC IX0=j0 'Z0=x)

2!P(XIjl,. .. ,Xk' iXI:jo)P(ZkcBI XO=j0,Zo=x,XI=jl,... ,Xk:j O)v(C) (2.20)

>pv(C)0(%0,BnA). 0

From the application of lemma 2.1, it can be shown that a renewal

equation can be created for the Markov renewal process {Xn, Z n, as in

expression (2.5). Once the behavior of E (T*) is determined, the basic
* N

renewal theorem can be applied.

Let us temporarily let Yn ={Xn , Z n. To create the renewal point,

we will make an inconsequential change in the definition of the process

{Yn} as proposed by Athreya, McDonald and Ney (1978a,b).
n



For k as in lemma 2.2, we note that {(Y k T k ). n:O, 1, 2, ... 1

is also a Markov renewal process. From this process, we define another

Markov renewal process {(6 nk'Y*kT*k)) by

P(6k: 6 ,Y*kEB,T*k -T*k :5t16nkk)n~

I(6=O)P(Y nk EB,T nkT nkk tIY nk=Y) if yE (10 ,A) c

(2.21)

= pt(Bf(jO,A))v(EO,tD)+I(6=O)[:P(YnkB,T nkTnkk~t'Ynk-kiY)

-2pO(Bn(j0 ,A))v([O,tJ3 if ye (j09A),

with p, v as in corollary 2.2, and y and 6 are either 0 or 1. We can

then define M( ,Y*,T*)) through the process {(6 kY*kT* )) by

k-1

1, fjnk-fj Ynk-jA J~k* nkj1 kk0 k n-n-

(2.22)
k-i k-1
1( VI I6=0))P( n (Y cA 9T -T t )Y y,T=y,Tk -T =t).

While the process (6 ,Y*,T*1 is not a ?4arkov renewal process, from (2.21)
n'l nn

and (2.22) it is clear that {(Y*,T*)1f(Y ,T )1. Also, letting
n n n n

N =infn > 1:6 :1), (2.23)

it follows from (2.21) and (2.22) that for

12



*(B) = [O(jOjA)]-I(Bn(Jo,A)),

t
P (Y*(t)cC)P (Yi'(t)C,T*>t)+ f P (Y*(t-T)EA)dP (T,-:T), (2.24)

0 1P N 02'

and the renewal equation is satisfied.

THEOREM 2.3. If B <-, and {Y n is ergodic then for O-almost all y and

any set C,

' lim P (Y(t)hC) =[E (T*)] -f P (Y*(t)cC, *>t)dt,

t1-y 1P N 0 V,~ C~>~t

where E (T*) <-.

PROOF. First we note that since the distribution of fT I depends only

on {Xn, if T* is arithmetic, then our Markov renewal process is equiv-
n N

alent to an appropriate Markov chain. As such we will assume T* is non-

arithmetic. From (2.22) it is clear that E (T*) can be determined from

{6n, Y*n, T*k.. Let u be the stationary measure of {Y I" Define u'
nk nk nk n

for Bc F by

v' (IB) :pu(jOA)0(Bn(jOA)),

i' (0,B) = u(B) - pp(jo,A)O(Bn(J0 ,A)).

13



Let us show that WIis the stationary measure of fS kY* ). It can

be trivially verified from the fact that for yc (J0 ,A), Be F

P k(yB) -,p$(Bn(j0,A)) that p' is indeed a measure. Therefore, we need

only check definition 3 for stationarity. For pi1(1,B)

1
1 fpi'j,dx)P(S 1,Y*EB16 =j,y*=X)

j=0 S k. k 0 0

1

S j=:k0

= fu(dx)P(6 =, *cBIY*=x)= p(j0 ,A)pO(Bn(j0 ,A)),

where the last equality follows from (2.21). For iz'(O,B)

1
1 fp'(j,dx)P(6 0 ,Y~cBI iJY*=x)
j=0 S k k 0 0

=fu~(dx)P(S =O,Y*cBIY*=x)
Sk k 0

f P~x[( EBY1x) cpB(JS)] (dx)P(Y eBIyo=X)
(j0,A) k(j 0 ,A) k 0

fv(dx)P(Y .B I Y 0 x) - 1(j0 ,A)p KWf(J 0 ,A)) = p'(O,B),

where the last equality follows from the stationarity of p for {Y n.

Since p'is stationary for {6 ,)Y*}, it follows from Puri and Tollar (1985)
n n

that

f vil(l~dy)E 1 y(T'*): ! fpi(1)(j, y))E (T.*) (2.25)

CJ0,A) (,)N J=O S QY

14



Since (T k) is independent of 60, we see that

f P' (1,dy)E(l, )(T * ) = u(o9A)pET (2.26)
(J0 ,A)

Also,

* 1

1 fi'( r dy)(,y)(T*) = i I (dy)Ey(Tk*)
j =O S S

(2.27)

=f(dy)Ey(Tk ) = kEU(T!).
S

Since E (T ) = w.E (T )=8, combining (2.25), (2.26) and (2.27), we

see that

E (T*) -.9 [pp(Jo,A)]-I k$.

Therefore, from (2.24) and the basic renewal theorem (see Karlin

and Taylor (1975)) we have that

lim P (Y(t)CC) = [E (T*N)-1f P (Y*(t)eC,T*>t)dt.
t-* 0 I N

V YThe set {y:p(N=oIYfy)> O} must have 0-measure zero, or else

E (T*) =- by simple arguments using ¢-irreducibility. Therefore

lim P y(Y(t)EC) =liM P (Y(t)CC),
t+- t-010

completing the proof. 0
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In the subsequent section, these results will be used to prove that

a certain storage model converges in distribution asymptotically.

3. THE STORAGE MODEL

For all je J, let {(U n(i),V n(i),W n(i)), n=1, 2, ...) be an i.i.d.

triplet sequence, independent of {(X , T n)) as in section 1, and of all

{(U n(j),V n(j),W n(j)), n =1, 2, ... 1 for j *i. Define a -two compartment

storage model recursively by

(Z1,n' Z n)=(maxrUn (Xn ) +Z l -V n(X n), 0],

(3.1)

maxrmin[U n(X n) +Z l,n-V n(X n)])+Z 2,--Wn (X n), 0]),

with the amount in storage at time t being given by

for N(t) as in (1.4).

Note that {Xn , Zl1n' Z 2nI is a Markov chain on some subset of

j x r0o-) x r01-).

Equation (3.1) is the two compartment storage model considered by

Tollar (1986), which has been widely analyzed in various forms by Purl,

Balagopal, Senturia and Woolford, among others.

Let us define E U by

i(T



with similar definitions for E V and E W. We will assume E U <w,

E V <'0, E W <-. Tollar (1986) analyzed the asymptotic behavior of

(Z1 (t),Z 2(t)) for the various orderings of Ef U, E V and E W. However,

the case where E U< E V and E U<E W was left as an open question.

Using the results of section 2, we will establish the main result of

this section.

THEOREM 3.1. If 8<-, E U< EV and E U<E 7W, then for arbitrary initial

distribution (X0 ,Zl,0,Z2 ,0 )

lir P(Z 1 (t) -zl,Z2 (t) -z 2 )

for - n as in section 2.
friZ*Ct),Z*(t) and T* asinsection_2

The majority of the proof is devoted to the non-trivial task of

illustrating there is a measure * for which {X n,Z l,Z ,n I is *-irreducible,

and then establishing ergodicity. After this is completed, theorem 2.3

can be used to establish the result.

Observe from Tollar (1986) that for initial values (ZI1,Z2,0),

(Z,n ,Z ) can be written in closed form as
l~ ,n

Z (Z )=max(Z 1 ,S Imax (S -S.)), (3.2)

ln 1,0 1,0 n <~n1

17



Z2 ,n(ZI 0,Z2 ,) max[Z, 0 +Z 2 ,0 +R n , Z1 ,0 + max (Sk+Rn-Rk),

(3.3)

max (Sk-S.+R -Rk)] Z
l5j_ 1 _ n l,n

n n
where S n (U i(X i)-Vi(X.)) and R n (Ui (Xi)-Wi(X))" Typically,

ZI,n(Z1 ,0) and Z2 ,n(ZI 0,Z2 ,0 ) will be written simply as ZI,n ' Z2,n

with the Z1,0 and Z2, 0 being understood.

Using (3.2) and (3.3), the first step of the construction of the

measure 0 is the following lemma.

LEMMA 3.2. If E U< E V and E U< E W, then there exists a z and a jO

- &'i such that for every (x0 ,y0 ), there is an no with the property that
40

P(Xno 0=j,Z 1 0no=,Z2 ,no 0 ZX 0=jo,Z1 o=xoZ 2 ,0=Yo) > 0.

PROOF. By a straightforward alteration of lemma 3.1 of Puri and Tollar

(1985), since E iU<E ETV, E itU<E TW, it follows that there exists an e >0, an n,

and a sequence j0' jI' "''' 1n-1 such' that

P(S n<-c,R n<-E, max (S ) X=l..., ,n-l:jn-lXn*:J0 X0=jO )
• 0'

Let M be an integer where M 0 +y(xo+Yo+), and let

A. {w:Sn-S n <-"Rn-R.n-<-c: max (S -S )=O
) nj nj-n< njRn-< ni-n<-kfnj nj- k

X n-n~zii .. Xn-n jo

18
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M M
Then P( n A-.1X =j )>O. Note for &.jA n A. that for no= nM

J~l 3 j~lJ

i) S n0<-M O-C

i) max (S n- S.) max ( max (S n-S )+(S n-S n 0~.
l 5j:n no 0 14_XM nk -n: j!nk 0kI n n

Thus, for all w 4EA,

Z (wlmax( max (S -S.),x x+S 1=0. (3.4)
l,n 0  1j n 0 non

Define n. by
I

Then, since max (S -S.)=0 for- all k, all wc A, we have
O:5lk ~k

(3.5)

max (Sk -S. =max[ max (S -Si )+ Sk- S n., max (Sks.] ax S-
O:5j!k OIfk nk n1  nk,!j!k n - -9k

If we in addition observe for we~ A that R n0< -x x0 -yo -e, we have

from (3.3) and (3.4) that

Z 2, (w)=max[ max (S k-S j+R n-R.K), x0 + max (S k+R n R.K03. (3.6)
2,0  1 j!k! n 0  0' l! k:'n0 0
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Clearly, from (3.5)

max (Sk-S +R -Rk):- max (R -PR+ max (Sk-S.))l <-] -5k !n 0 k n0  0 <-k - 0n 0 0K ~j!5Ck j

max (R -Rk+ max (Sk-S.))
0"-'k-n 0 0 nk -j -5k

(3.7)

- max [ max (R -Rk+ max (Sk-S.))]
l2--<M nt-n.e--n 0 nt-nj-k

- max [ max (Rnt-Rk+Sk-Sj) ] ,
I5- M nt-n:j _ kgnt

where the last inequality follows from Rn0-Rnt < -(M-r)i.

Also, we have that for wc A,

max (Sk+R -Rk) = max [S +(S k-S ) + (+ n +n
i!k<_n 0  0 ik<n0  nk k nk 0 k

Since Snk < - ekn- 1, and R n-R n+n< -e(no-nk-n)n - I

max (Sk+R -Rk) < max (Sk-Sn +Rnk+n-R )
lkn 0 lk1 n 0  k k

Since e(M-l)> x0 , we see that

x0+ max (Sk+Rn -Rk) < max (Sk-S n+Rn +n-Rk)
l-kgn0  0 l-kn k0 0

(3.8)< max [ max (Sk-Sntn+RnRk)]

k__M ne-n<_k _r
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Combining (3.7) and (3.8), from (3.6) we see that for wE A,

Z ( ) - max ( max (Sk-SJ+Rn nR)). (3.9)
.,Tn0  1 .9!4 nt-n j:5k~nt

Therefore, if z is such that

P(S <-c,R <-c max (S -S.)= O, max (R n-+Sk-S.)-z,
n n O-j-n n 0 Qj Hn r.

SXl:Jl ,...,Xn=jo0lXo0=j 0) 6 > 0 ,

it follows from (3.4) and (3.9) that

P(X no=j0,Z l,n=O,Z2,n0z X 0 =J0 ,Zl 0=x0 ,Z2 0=Yo)> 6 M >O.

THEOREM 3.3. If E U<E V and E U< E W, then there exists a z and a 30'

such that for every (i,zlZ 2 ) there is an n1 with the property that

P(XnJ1 = ZI,n1= 0 'Z 2 ,n l  Zi,0z1 ,Z 2 ,0=z 2 )>.

PROOF. From (3.1) it is clear that for all n, x, and j, whenever

X 1:1 y1 and x2 -y 2, then
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= 'Zl, nO-Z2-,n - YO - ' Zl, o-xl'Z2, 0:Y2 )

(3.10)

_P(xn=j0 ,Z1 ,n=OZ2,n <x Xo=j Z1 ;=ylZ2,o=Y2).

Since for any i, zl,z 2 , there must be an m, B and B2 where

P(Xm=jo,ZI BI,Z2_B IX =i,ZIo=Z Z z2)>O 0
m 0 Zm12,m 2 01,1 2,02

then it follows from the Markov nature of (X n,Z ,,Z ,n ) and from (3.9)

that lemma 3.2 implies for n = n0 +m,

P PX , _z I x0  I )
P(X nl=J OIZl,n 1 =O 2,nl i= O=Z1 lZ2,0=z2

2tP (X n =o:0'ZI l,n0=0 , Z2 ,no~ 0 5zXO=jo] 0 = oBI ' 290=BB2 )

P(XB Ix=i,Z1 z
I'm0  '0m 00 1,0 19,02

"""P(Xm1o'ZI~m -BItZ 2 ,m -B 2 oX:: 1 zl,Z 2 ),

which completes the proof. 0

To accomplish the next step in showing that (X nZ 1,Z ,n ) is

*-irreducible, we need the following lemma about cyclic permutations.

Let X ,...X n be a sequence of values. We define the cyclic pernu-

tation of X ... , Xn about ko by

S+i 1- i -5 n -k°
X~ko ) =

I Xi-n+ko n-k0 < i -< n.
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LEM1MA 3.4. Let {(X.,Y.i), i=1,2%..., n) be a sequence of numbers satifyini7

- 1

n n n
X i:0, YY <0-5, max ( I X.)=0. Then there exists a ko where
1 1 Ojn'j+1 1

-S

-I

k n y(ko )  n
max I Xi + Y(kO) ) max ( X(kO)) 0

O<j<-k-n j+l k+l O5jn j+l i

holds.

The proof of the above is omitted. It is easily verified that forSn k°

kO equal to the integer where I Yi + max I X ) max ( X Xi + I Y1)ko +l Osj:sk o +1 0sj!-k<-n j+l k+l

that the lemma is true. Using this lemma, we establish the next step in

0-irreducibility.

THEOREM 3.5. If E U<E V and E U<E 7TW, then for z and j0 as in theorem 3.3,

there exists an nI, j 1 and a measure pz where p ([O,-))> 0 such that for

all AE 1B , and 0<x sz,

P(Xn=j Z eA.Z 2
=0IX 0 = 0 ,ZI,0 =0,Z 2 0 x) z(A).

n 'l,n I 2n11 'Z,='20

PROOF. From lemma 3.2 it is clear there must be a y where for

A(i)={w:Sn -S ni-n -e, Rn. -R ni-n< -C, max (S ni-S )=O,
~j ni-nni ni-n ni-n~ksni n

(3.11)

max (Rz-+Sk -) y, Xn)Sn1 l=Jl, ..., Xni=J

ni-nsjsk<-ni

ni-n
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Let us define (k) W(k) by0 ' n-I

(k) ji+k : i <n -k

" Ji "n-k~i<n" ]i-n+k n-:i<

and define

, B(i,k){w:S n+i-S < -E, .n+-R < -c max (R -R k+Sk -S )<2y,
i5j <k-._<Stn+i

(3.12)
.(k) (k)

Xi+l= l ' n+2 = 0  "

Then from (3.11) it follows that for all i, k,

M
Clearly, for A= n A(i), where M> E -(z+3y)+l, we have P(AJX0=J0) >

i=l
and for all wEA, SM< -ME, Rn< -ME, max (S -S.)=0. Thus, from

MnMn < ~ 1~ Mn

loma 3.4 we have there is a k0 where

P(A, -R + max (Sk -S.) max (R n- k+Sk-Sj)1X0=50) > 0. (3.13)
0 0 .j<k 0 0j<k _Mn

0

Let m=k 0 -nmax{i:ni-5k 0 and nlI!4n+m. It is clear from (3.12) and

(3.13) that for

M-1
B = { n TI(ni+m,m)} n {: max (R -Pk+Sk-S.)- max (Sn-S 0}

i=O m5j! k -n 1 m_jn 1

P(BIX =j m)1 > 0. (3.14)
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Also, for

C=cjj: max (R -Rk*Sk'-Sj)Y mi

P(CnBIX 0=j 0  > 0.

Let us show for Z 1,0=0, z 2 , 0 =z for all woe C n B,Z 2 , =0O* it

follows from (3.3) that

Z 2,nmax( max (Rn -FRk1.S kSj) z+%n) max (S n-S.).
21  05 J:Skcn 1 1 O~gj:n 1 n

From the definition of B and C, we see

z + R=z+Rl*R -R 5z+y-Mc<Op

and therefore

z max[ max (Rn R+Sk S ), max (Rn ~R,+ S)3- max (Sn -S.).
2,n 1  m5j Sk5n n 1-kk 0gj:k~gn n 1 RkSSi 05J :5nn 1

From (3.14), we have that

max (R n R k+Sk-S.) max (S n- S 1)!50
U.!j~dc!n 1  1 0: 0jS n n1

and therefore to show Z 2,n 0 for 4)cBn C, it is sufficient that for

0:5j <m, 0 r.j :k:5nl, R n l-R k +Sk -S 1 50. if k <m, from the definition

of B and C,

25
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*R n -R k+S k- S= (R nI-R m) + (R m-R k+S-S ):S-mce'+y<0.

If k 2! , letting ii=nax {i:ni+ m:5k),

1n Rkik-Sj=( n 1 R ni+n+m )+Rni+n+inY'+Sk-Snm )+(Sn ~-s m)+ (S -S.

S-[- (i+1)] + 2y- £i+y <0.

Since Z ~0 for w cP nC, it follows that
2,n1

P(X =j Z =0 IX j ,Z 0,Z Z) > 0.
n1 2,n 1  0 01 1,0 2,0

For A e 1+, let

Then to complete the theorem, we need only note that for x:Sz,

.. P{X n j m,n 1 A,Z 2n=01Oj'lO='20x

54~~~ n iii lnn1  21  IX jZ 0Z 2 x

max[ max (R n -Sk-Si ),x +R n- max (S n-Sj )-=OIX j0)!z()
Ojssn1 1 0! J!n 1 i -

since mnax[ max (R n -R k+Sk-S.) x+P R is monotone in x. 0
0:5j~k:5n 1
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From the previous theorems, we can now establish that {X Zn, Z
n' l,n "2,n"

is *-irreducible.

THEOREM 3.6. If E U <E V and E U <E W, then {X, Z Z is *-irreduc.-
W - -T T ~ 2,n -

ible with respect to the measure * defined by

O() 2 PE(X 'z ,Z )cBIX O , xZ =Oi(d)
B)= fnn ln 2,n lZl,0=x Z2,0=0)Vz(dx),

for j and uz as in theorem 3.5.

PROOF. From definition 1 of *-irreducibility (see section 2), we see we

need for all B where O(B)> 0, that for all i, z 1  z2,

[ 2-nP((X ,Z ,Z ) BXo=i,ZI 0 z,Z 2 0 z2 ) >O.
n1l n l,n' 2,n 0 0192=z

If *(B) >0, there is an n1 where

fpu(X IZ ,Z )goEBIX = (x >0n l,n, 2,n 1  0 lZ 1 , 0= x Z2 , 0 = 0 ) Uz

From theorem 3.5 there is an n2 where for x--z,

P(Xn2= j 1'Z ,Z 2 t,n2=0  
0=J0 'Z1 ,0=0'Z 2 ,0=x) - 'A z(A).

From theorem 3.3 there is an n3 where

P(X3=io0 ,Zn=O'Z2 ,n3- z Io=i ,Z 1 ,Z2o= 2 0> =8•o.
n :O, 2 ,n 3 0 I 1 ,0 lZ 2 ,0 z2
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Therefore, for n=n1 +n2 +n 3 we find from theorem 3.3 and 3.5 that

P((X n,Z,nZ2 )eBIXo~i,,Zl,0=z I Z 2 ,0=z 2 )

,Z. Z_ 0=0Z 2 ,oZ)8

P((x n+n2 l,n1+n2 z,n1+n2 )EBIX 0=JoZ 1 0 =0,

2fP((XiZ 1 Z2 n).BIXo=j,ZoX,Z2 ,0 =0)z(dx)0>O. 0

Now that 0-irreducibility has been established, the ergodicity of

{X, Z l,Z 2,n  can be established by appealing to the large body of

literature on 0-irreducible Markov chains.

THEOREM 3.7. If E U <E 7rV and E U <E W, then {(X Z,n 2,n )) is ergodic.

PROOF. Since {X , Zfl Z2, is 0-irreducible, from Jamn and Jamison

-, i (1967) it follows that there exists a subinvariant measure v where

j>>0. (see definition 2 in section 2). From Tweedie (1975), it follows

that if

l~im n . F((Xt,Z1 1XZ 2 i)eA tX0 :j0 ,Z0=0Z 2,0 =0))>0 (3.15)

for some A where 0 <u(A)<-, then {Xn' zl,n, Z2, n l is ergodic.

It was established in Purl and Tollar (1985) that there is a j04 No, M

and 6>0 such that for all n•Not
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P(X cB,Z 01OX 0 =j 0,Z1 0, z'2O 0> 6,

where B= {J1u (1, 2, ... t'). Also, from Tollar (1985a), we have that

d ,n- z 2. As such, there Is a w where for all n O

P(Z 2 nw Ix0 =ji'lz10 'Z2 ,0 20) <6/2.

Thus, for all n O

P(X n B,Z1 ,oz 2 ,nsix 0 j ,=OZ 2 ,0=o) >6/2.

As such, from (3.15) we need only establish that 0Oii(B,Ojf0,w)) <-'to

prove ergodicity. From theorem 3.3, it is clear for some w that

O(B,O,[0,w))> 0, which implies v(B,O,[O,w])>O0, since v >>O.

To show that u(B,O,[O,w]) <-, it is sufficient that I(i,Oj0,w])<~

for all I eB. Since Ui is 0-finite, there are sets where v(S n) <-, and

u S n Jx[Ow-)x [,-). In the construction of these sets in the proofs
n=1n

that Pi is a-finite (see Jain and Jam~ison (1967), and Orey (1971)), we

see that the sets are of the form

n 1S ={(j'xx) P(Xl )E (3.16)

for A a specified set where C(A) > 0.
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Since O(A) > 0, there is an n1 where

fP(( Z. ,Z )EAIX0 Z,:xZ20)z(dx)=a>0. (3.17)s n il n. ,nl 1 z'nl21Z,=0

• +

From theorem 3.5, there is an n2 where for x5z, 
all De ,

P(X n 2=jIZn2 eD,Z 2,n2=0x0=J0,ZI,0=0,Z2,0=x)2!Vzz(D). (3.18)

Also, from theorem 3.3 and (3.1), it is apparent that there is an n where

for all u :w,

P(Xn jo,Zln0,Z 2,n X ,002,0

(3.19)

P(Xn=j,Zn=OZ 2  szIXo=J=,Z 0 'Z 2 0=w)=6 >0.n OZn 2,n 0 10 ,

Therefore from (3.17), (3.18) and (3.19) for n =n n + n1 + n2, it is clear

that for all u:w

n, ln 2,n)02,0

It is therefore clear from (3.16) that (j,0j0,w])cS where n*• W.)

As such P(B,0,(0,w]) < I U(S ) <-, which completes the proof. 0
jEB n

Once the *-irreducibility and ergodicity of {Xn , , Z 2 is
An l~'2,n

established, the proof of theorem 3.1 follows quickly.
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PROOF OF THEOPIM t.l. The majority of the proof is accomplished by simply

noting that {X n , Z~ln 2 ,n' T n} has the desired form of section 2. As

such, theorem 2.3 can be applied to yield fo~r *-almost all iIPY)

lim P O (lt5lZ2()52

01Y

To complete the theorem, it is sufficient to show that for all (i 0 'X ,Y0 ),

(3.20) holds.

Since (3.20) holds for *-almost all initial values, for any 10CJ

there is an (x1 -,Y1) where for initial value (i0,x1,y1 ), (3.20) holds.

As such, to complete the proof it is sufficient to show that

for Z In W,) z Z2,n(,y) as in (3.2) and (3.3).

From (3.2) and (3.3) we can see that

:5PU[Sn>min( -x ,-x1 )]u[ max (IS.i+R n-R.i)>-min(-x 0,-x1 )] (3.21)

9u[R n>min(-x 0-yollx1-y)] 1.O.X X0 i 0)
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From Chung (1967),

n-s E 7rU-E V a.s., n-iR nE U-E W a.s.,n iT n

and n-1 max (S.+R -R ) =n-iR +n - I max (S.-R.)

1sj 3 i n lj 5n

-EVU-E W+ max(O,E W-E V), a.s..

Since E U <E V V and E U<E W, we see that

Sn -- n ,Rn-, max (S.+R-R.)-*-, a.s.,

and therefore from (3.21) we have that

P(Z l,n (x 0),z2,n (x oY0)) *( (l,n (x1),Z 2,n (XlYl)M.o. IX0 =i )  0,

which completes the theorem. 0

As is usually the case, the construction of the measure 0 was the

major difficulty in dealing with the storage model as a Markov chain.

The technical details unfortunately obscure the simplicity of the con-

cept. When there is a renewal point, the measure is readily constructed

for general Markov chains. While there is no renewal point in the pre-

sent model we make the process act like one exists by first visiting

(i0,O,. ) and then visiting (i 1 ,.,O). In this manner it "forgets" the

initial values ZI,0,Z2,0 .
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4. CONCLUSION

While the results in section 2 are useful for the typical storage

models defined on denumerable state Markov renewal processes, they are

not particularly satisfying for the more general Markov renewal process

on an arbitrary state space. Perhaps more structure on T n I (for example,

absolute continuity on all sojourn times with respect to a single measure)

would allow a suitable modification of the C-set proof to establish that

ergodicity and an appropriate finite sojourn moment are sufficient to

satisfy the hypothesis of section 2. If this were the case, the proof

that the arbitrary semi-Markov process converges would be complete.

This area remains an open question.

The multitude of steps in section 3 point out a recurring problem

in Markov chains, the construction of *. The techniques of section 3

shed little light on how to construct such measures. As of now, the

technique is very model specific. For applications, it would be very

useful to have conditions which guarantee 0-irreducibility for Markov

chains.

As far as the actual model under consideration in section 3, there

are a variety of areas for further research. The most obvious is ta

take the arbitrary compartment model in Tollar (1985a,b), and extend the

continuous time results as in the present paper and Tollar (1986).

Perhaps of more interest would be to alter the model to more realistically

accomodate two-way flow between compartments. Finally, it would be nice

to have a more useful characterization of the limiting distribution of

(Z1 (t),Z 2(t)) than the renewal equation results found in section 3.

Unfortunately, the present techniques seem to be of little help in these

directions.
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